参考記事・ウェブサイト

参考記事・ウェブサイト

ソースディレクトリ

Abedon, S. T., Kuhl, S. J., Blasdel, B. G., & Kutter, E. M. (2011). Phage treatment of human infections. Bacteriophage, 1(2), 66–85. http://doi.org/10.4161/bact.1.2.15845 (「人間の感染症のファージ治療」)

Ackerman, J. (2012). The ultimate social network. Scientific American, 306(6), 36–43. http://doi.org/10.1038/scientificamerican0612-36 (「究極のソーシャルネットワーク」)

Ai, D., Huang, R., Wen, J., Li, C., Zhu, J., & Xia, L. C. (2017). Integrated metagenomic data analysis demonstrates that a loss of diversity in oral microbiota is associated with periodontitis. BMC Genomics, 18(S1), 1041. http://doi.org/10.1186/s12864-016-3254-5 (「メタゲノミクスデータの統合解析によって示された口内細菌叢の多様性低下と歯周炎の関連」)

Alekseyenko, A. V, Perez-Perez, G. I., De Souza, A., Strober, B., Gao, Z., Bihan, M., … Blaser, M. J. (2013). Community differentiation of the cutaneous microbiota in psoriasis. Microbiome, 1(1), 31. http://doi.org/10.1186/2049-2618-1-31 (「乾癬における皮ふ細菌叢の細菌群間の差異」)

Andersson, D. I., Hughes, D., & Kubicek-Sutherland, J. Z. (2016). Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resistance Updates, 26, 43–57. http://doi.org/10.1016/j.drup.2016.04.002 (「抗微生物ペプチドに対する細菌耐性の機序と結果」)

Bahar, A. A., & Ren, D. (2013). Antimicrobial peptides. Pharmaceuticals, 6(12), 1543–1575. http://doi.org/10.3390/ph6121543 (「抗微生物ペプチド」)

Barbut, F., & Meynard, J. L. (2002). Managing antibiotic associated diarrhoea. BMJ (Clinical Research Ed.), 324(7350), 1345–6. http://doi.org/10.1136/bmj.324.7350.1345 (「抗生物質関連下痢症の管理」)

Blaser, Martin J., Missing Microbes: How the Overuse of Antibiotics Is Fueling Our Modern Plagues, Henry Holt Verlag, New York, 2014 (「失われた細菌-抗生物質の乱用はどのように病気を拡大させたのか」)

Blekhman, R., Goodrich, J. K., Huang, K., Sun, Q., Bukowski, R., Bell, J. T., … Clark, A. G. (2015). Host genetic variation impacts microbiome composition across human body sites. Genome Biology, 16(1), 191. http://doi.org/10.1186/s13059-015-0759-1 (「宿主(人間)の遺伝的差異によって人体各部のマイクロバイオームの構成は変化する」)

Bokulich, N. A., Subramanian, S., Faith, J. J., Gevers, D., Gordon, I., Knight, R., … Manuscript, A. (2013). Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. NIH Public Access. Genomics, 10(1), 151–170. http://doi.org/10.1146/annurev-genom-090711-163814. (「クオリティフィルタリングによるイルミナアンプリコンシークエンシングを用いた多様性評価の改善」)

Briers, Y., & Lavigne, R. (2015). Breaking barriers: expansion of the use of endolysins as novel antibacterials against Gram-negative bacteria. Future Microbiology, 10(3), 377–390. https://doi.org/10.2217/fmb.15.8 (「壁を超える-グラム陰性菌に対する新規抗生物質としてエンドリシンの使用が拡大」)

Briers, Y., Walmagh, M., Grymonprez, B., Biebl, M., Pirnay, J. P., Defraine, V., … Lavigne, R. (2014). Art-175 is a highly efficient antibacterial against multidrug-resistant strains and persisters of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 58(7), 3774–3784. https://doi.org/10.1128/AAC.02668-14 (「緑膿菌の多剤耐性菌株との持続性残細菌に対して非常に効果のある抗生物質Art-175」)

Briers, Y., Walmagh, M., Puyenbroeck, V. Van, Cornelissen, A., Cenens, W., Aertsen, A., & Oliveira, H. (2014). Engineered Endolysin Based “ Artilysins ” To Combat Multidrug Resistant GramNegative pathogens. mBio, 5(4), 1–10. https://doi.org/10.1128/mBio.01379-14.Editor (「多剤耐性グラム陰性菌に対するArtilysinを基にした遺伝子組み換えエンドリシン」)

Chen, Y., & Tsao, H. (2013). The skin microbiome: current perspectives and future challenges. Journal of the American Academy of Dermatology, 69(1), 143–155. http://doi.org/10.1016/j.jaad.2013.01.016.The (「皮ふマイクロバイオーム-現状と将来の挑戦」)

Christina, S., Ltg, M., Spies, S., Werle, K., Alice, B., Ltg, K., … Rabe, G. (2016). Was unsere Bakterien über uns verraten. Spektrum der Wissenschaft (「人の体の細菌が人間について明らかにしたこと」)

Clemente, J. C., Pehrsson, E. C., Blaser, M. J., Sandhu, K., Gao, Z., Wang, B., … Dominguez-Bello, M. G. (2015). The microbiome of uncontacted Amerindians. Science Advances, 1(3), e1500183–e1500183. http://doi.org/10.1126/sciadv.1500183 (「未開地のインディオのマイクロバイオーム」)

Cooper, A. J., Weyrich, L. S., Dixit, S., & Farrer, A. G. (2015). The skin microbiome: Associations between altered microbial communities and disease. Australasian Journal of Dermatology, 56(4), 268–274. http://doi.org/10.1111/ajd.12253 (「皮ふマイクロバイオーム-細菌群の変容と病気の関連」)

Defraine, V., Schuermans, J., Grymonprez, B., Govers, S. K., Aertsen, A., Fauvart, M., … Briers, Y. (2016). Efficacy of artilysin art-175 against resistant and persistent acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 60(6), 3480–3488. https://doi.org/10.1128/AAC.00285-16 (「薬剤耐性、持続性アシネトバクターに対するArtilysin art-175の効果」)

Dietert, R. R., & Silbergeld, E. K. (2015). Biomarkers for the 21st century: Listening to the microbiome. Toxicological Sciences, 144(2), 208–216. http://doi.org/10.1093/toxsci/kfv013 (「21世紀のバイオマーカー-マイクロバイオームの声を聴く」)

Dye, C. (2014). After 2015: infectious diseases in a new era of health and development. Philos Trans R Soc Lond B Biol Sci, 369(1645), 20130426. http://doi.org/10.1098/rstb.2013.0426 (「2015年以後-新しい時代の健康と感染症」)

Gaskins, H. R. (1999). Developmental Microbial Ecology of the Neonata GIT. The American Journal of Clinical Nutrition, 69, 1035S–1045S. (「新生児の上部消化管穿孔における微生物生態の発達」)

Gerstmans, H., Rodriguez-Rubio, L., Lavigne, R., & Briers, Y. (2016). From endolysins to Artilysin(R)s: novel enzyme-based approaches to kill drug-resistant bacteria. Biochemical Society Transactions, 44(1), 123–128. https://doi.org/10.1042/BST20150192 (「エンドリシンから新規エンドリシンへ―薬剤耐性菌に対する新規酵素を基にしたアプローチ」)

Grice, Elizabeth A. (Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892–4442, U. ., & Segre, J. A. (2013). The skin microbiome. Nat Rev Microbiol, 9(4), 244–253. http://doi.org/10.1038/nrmicro2537.The (「皮ふマイクロバイオーム」)

Huang, B., Fettweis, J. M., Brooks, J. P., Jefferson, K. K., & Buck, G. A. (2014). The changing landscape of the vaginal microbiome. Clinics in Laboratory Medicine, 34(4), 747–761. http://doi.org/10.1016/j.cll.2014.08.006 (「膣マイクロバイオームの研究動向の変化」)

Hug, L. A., Baker, B. J., Anantharaman, K., Brown, C. T., Probst, A. J., Castelle, C. J., … Banfield, J. F. (2016). A new view of the tree of life. Nature Microbiology, 1(5), 1–6. http://doi.org/10.1038/nmicrobiol.2016.48 (「生命の樹の新しい見方」)

Indrio, F., Martini, S., Francavilla, R., Corvaglia, L., Cristofori, F., Mastrolia, S. A., … Loverro, G. (2017). Epigenetic Matters: The Link between Early Nutrition, Microbiome, and Long-term Health Development. Frontiers in Pediatrics, 5(August), 1–14. http://doi.org/10.3389/fped.2017.00178 (「エピジェネティクスの問題-幼児期の栄養とマイクロバイオーム、長期的な健康の関連」)

Kashani, H. H., Schmelcher, M., Sabzalipoor, H., Hosseini, E. S., & Moniri, R. (2017). Recombinant Endolysins as Potential Therapeutics against Antibiotic-Resistant Staphylococcus aureus : Current Status of Research and Novel Delivery Strategies. https://doi.org/10.1128/CMR.00071-17 (「薬剤耐性黄色ブドウ球菌に対する治療法として可能性を持つ遺伝子組み換えエンドリシン、研究の現状と新しいデリバリー戦略」)

Khanna, S., & Tosh, P. K. (2014). A clinician’s primer on the role of the microbiome in human health and disease. Mayo Clinic Proceedings, 89(1), 107–114. http://doi.org/10.1016/j.mayocp.2013.10.011 (「人間の健康と病気におけるマイクロバイオームの役割-子供のための入門」)

Kong, H. H. (2015). Temporal shifts in the skin microbiome associated with disease flare and treatment in children with atopic dermatitis. Genome Research, 850–859. http://doi.org/10.1101/gr.131029.111 (「子供のアトピー性皮膚炎の再燃と治療に関連する皮ふマイクロバイオームの一時的変化」)

Kong, H. H., & Segre, J. A. (2012). Skin microbiome: looking back to move forward. HHS Public Access, 132(3), 933–939. http://doi.org/10.1038/jid.2011.417. (「皮ふマイクロバイオーム-前に進むために過去を振り返る」)

Lederberg J, McCray AT ; Genealogical Treasury of Words. Scientist. 2001;15(7):8. (「Genealogical Treasury of Words」)

Lima-Ojeda, J. M., Rupprecht, R., & Baghai, T. C. (2017). “I am i and my bacterial circumstances”: Linking gut microbiome, neurodevelopment, and depression. Frontiers in Psychiatry, 8(AUG), 1–13. http://doi.org/10.3389/fpsyt.2017.00153 (「「私自身と細菌が私」-消化管マイクロバイオーム、神経発達、うつ病を関連づける」)

Lloyd-Price, J., Abu-Ali, G., & Huttenhower, C. (2016). The healthy human microbiome. Genome Medicine, 8(1), 51. http://doi.org/10.1186/s13073-016-0307-y (「健康なヒトマイクロバイオーム」)

Luke K Ursell, Jessica L Metcalf, Laura Wegener Parfrey, and R. K. (2013). Definig the Human Microbiome. NIH Manuscripts, 70(Suppl 1), 1–12. http://doi.org/10.1111/j.1753-4887.2012.00493.x.Defining (「ヒトマイクロバイオームの定義」)

Manuscript, A., & Wounds, C. (2012). Current Topics in Innate Immunity II, 946, 55–68. http://doi.org/10.1007/978-1-4614-0106-3 (「手稿」)

Martín, R., Miquel, S., Langella, P., & Bermúdez-Humarán, L. G. (2014). The role of metagenomics in understanding the human microbiome in health and disease. Virulence, 5(3), 413–423. http://doi.org/10.4161/viru.27864 (「健康と病気に関してヒトマイクロバイオームを理解するためのメタゲノム解析」)

Mcmahon, T., Zijl, P. C. M. Van, & Gilad, A. A. (2015). NIH Public Access, 27(3), 320–331. http://doi.org/10.1002/nbm.3066.Non-invasive (「NIHパブリックアクセス」)

Muszer, M., Noszczyńska, M., Kasperkiewicz, K., & Skurnik, M. (2015). Human Microbiome: When a Friend Becomes an Enemy. Archivum Immunologiae et Therapiae Experimentalis, 63(4), 287–298. http://doi.org/10.1007/s00005-015-0332-3 (「ヒトマイクロバイオーム―友人が敵になるとき」)

Nih, T., & Working, H. M. P. (2009). The NIH Human Microbiome Project. Genome Research, 19(12), 2317–2323. http://doi.org/10.1101/gr.096651.109. (「NIHヒトマイクロバイオームプロジェクト」)

Riiser, A. (2015). The human microbiome, asthma, and allergy. Allergy, Asthma & Clinical Immunology, 11(1), 35. http://doi.org/10.1186/s13223-015-0102-0 (「ヒトマイクロバイオーム、喘息、アレルギー」)

Roach, D. R., & Debarbieux, L. (2017). Phage therapy: awakening a sleeping giant. Emerging Topics in Life Sciences, 1(1), 93–103. http://doi.org/10.1042/ETLS20170002 (「ファージセラピー-眠れる巨人を起こす」)

Rodríguez-Rubio, L., Chang, W. L., Gutiérrez, D., Lavigne, R., Martínez, B., Rodríguez, A., … García, P. (2016). “Artilysation” of endolysin λSa2lys strongly improves its enzymatic and antibacterial activity against streptococci. Scientific Reports, 6(June), 1–11. https://doi.org/10.1038/srep35382 (「エンドリシンλSa2lysをArtilysin化するとレンサ球菌に対する酵素活性と抗菌活性を大きく高める」)

Sender, R., Fuchs, S., & Milo, R. (2016). Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biology, 14(8), 1–14. http://doi.org/10.1371/journal.pbio.1002533 (「人間と人体中の細菌の細胞数に関する修正見積もり」)

Schmelcher, M., Donovan, D. M., & Loessner, M. J. (2012). Bacteriophage endolysins as novel antimicrobials. Future Microbiology, 7(10), 1147–1171. https://doi.org/10.2217/fmb.12.97 (「新しい抗菌剤としてのバクテリオファージエンドリシン」)

Schmelcher, M., & Loessner, M. J. (2016). Bacteriophage endolysins: Applications for food safety. Current Opinion in Biotechnology, 37(July), 76–87. https://doi.org/10.1016/j.copbio.2015.10.005 (「バクテリオファージエンドリシン―食品安全への応用」)

Smith, K. F., Goldberg, M., Rosenthal, S., Carlson, L., Chen, J., Chen, C., & Ramachandran, S. (2014). Global rise in human infectious disease outbreaks. Journal of The Royal Society Interface, 11(101), 20140950–20140950. http://doi.org/10.1098/rsif.2014.0950 (「人間の感染症のパンデミック発生」)

Steenbergen, J. N., Alder, J., Thorne, G. M., & Tally, F. P. (2005). Daptomycin: A lipopeptide antibiotic for the treatment of serious Gram-positive infections. Journal of Antimicrobial Chemotherapy, 55(3), 283–288. http://doi.org/10.1093/jac/dkh546 (「ダプトマイシン-重篤なグラム陽性細菌感染症の治療に対するリポペプチド抗生物質」)

Struzycka, I. (2014). The oral microbiome in dental caries. Polish Journal of Microbiology, 63(2), 127–135. (「虫歯と口内マイクロバイオーム」)

Thomas, F., Hehemann, J. H., Rebuffet, E., Czjzek, M., & Michel, G. (2011). Environmental and gut Bacteroidetes: The food connection. Frontiers in Microbiology, 2(MAY), 1–16. http://doi.org/10.3389/fmicb.2011.00093 (「外部環境と消化管のバクテロイデス属-食事との関係」)

Zaura, E., Nicu, E. A., Krom, B. P., & Keijser, B. J. F. (2014). Acquiring and maintaining a normal oral microbiome: current perspective. Frontiers in Cellular and Infection Microbiology, 4(June), 1–8. http://doi.org/10.3389/fcimb.2014.00085 (「健全な口内マイクロバイオームを実現・維持する-現在の動向」)

http://www.bbc.com/news/health-30416844

Hojsak, I. (2017). Probiotics in Children: What Is the Evidence? Pediatric Gastroenterology, Hepatology & Nutrition,20(3), 139. https://doi.org/10.5223/pghn.2017.20.3.139 (「子供のためのプロバイオティクス、そのエビデンスとは?」)

Cerdó, T., Ruíz, A., Suárez, A., & Campoy, C. (2017). Probiotic, prebiotic, and brain development. Nutrients,9(11), 1–19. https://doi.org/10.3390/nu9111247 (「プロバイオティクス、プレバイオティクス、脳の発達」)

He, M., & Shi, B. (2017). Gut microbiota as a potential target of metabolic syndrome: The role of probiotics and prebiotics. Cell and Bioscience, 7(1), 1–14. https://doi.org/10.1186/s13578-017-0183-1 (「メタボリックシンドロームの潜在的な原因の可能性がある消化管細菌叢-プロバイオティクスとプレバイオティクスの役割」)

Holder, M. K., & Chassaing, B. (2018). Impact of food additives on the gut-brain axis. Physiology and Behavior, (February), 0–1. https://doi.org/10.1016/j.physbeh.2018.02.025 (「食品添加物が脳腸軸に及ぼす影響」)

Katan, M. B. (2012). Why the European food safety Authority was right to reject health claims for probiotics. Beneficial Microbes, 3(2), 85–89. https://doi.org/10.3920/BM2012.0008 (「欧州食品安全局によるプロバイオティクスの健康強調表示の拒否が正しかった理由」)

Lebeer, S., Bron, P. A., Marco, M. L., Van Pijkeren, J. P., O’Connell Motherway, M., Hill, C., … Klaenhammer, T. (2018). Identification of probiotic effector molecules: present state and future perspectives. Current Opinion in Biotechnology, 49(November 2017), 217–223. https://doi.org/10.1016/j.copbio.2017.10.007 (「プロバイオティクスのエフェクター分子の特定-現状と将来の展望」)

Ouwehand, A. C. (2017). A review of dose-responses of probiotics in human studies. Beneficial Microbes, 8(2), 143–151. https://doi.org/10.3920/BM2016.0140 (「人間のプロバイオティクスの用量反応に関するレビュー」)

Sanders, M. E., Benson, A., Lebeer, S., Merenstein, D. J., & Klaenhammer, T. R. (2018). Shared mechanisms among probiotic taxa: implications for general probiotic claims. Current Opinion in Biotechnology, 49(Figure 1), 207–216. https://doi.org/10.1016/j.copbio.2017.09.007 (「プロバイオティクスの共通メカニズム-プロバイオティクスが一般的に意味するもの」)

Shortt, C., Hasselwander, O., Meynier, A., Nauta, A., Fernández, E. N., Putz, P., … Antoine, J. M. (2018). Systematic review of the effects of the intestinal microbiota on selected nutrients and non-nutrients. European Journal of Nutrition, 57(1), 25–49. https://doi.org/10.1007/s00394-017-1546-4 (「選択的および非選択的栄養が消化管細菌叢に与える影響に関するシステマティックレビュー」)

Summer, A., Formaggioni, P., Franceschi, P., Frangia, F. Di, Righi, F., & Malacarne, M. (2017). Cheese as functional food: The example of parmigiano reggiano and grana padano. Food Technology and Biotechnology, 55(3), 277–289. https://doi.org/10.17113/ft b.55.03.17.5233 (「機能性食品としてのチーズ-パルミジャーノ・レッジャーノとグラナ・パダーノの例」)

Thomas, F., Hehemann, J. H., Rebuffet, E., Czjzek, M., & Michel, G. (2011). Environmental and gut Bacteroidetes: The food connection. Frontiers in Microbiology, 2(MAY), 1–16. https://doi.org/10.3389/fmicb.2011.00093 (「外部環境と消化管のバクテロイデス属-食事との関係」)

Tytgat, H. L. P., Reunanen, J., Rasinkangas, P., Hendrickx, A. P. A., Laine, P. K., Paulin, L., …Vos, W. M. De. (2016). Lactobacillus rhamnosus, 82(19), 5756–5762. https://doi.org/10.1128/AEM.01243-16.Editor (「ラクトバチルス・ラムノサス」)

Zinöcker, M. K., & Lindseth, I. A. (2018). The western diet–microbiome-host interaction and its role in metabolic disease. Nutrients, 10(3), 1–15. https://doi.org/10.3390/nu10030365] (「西洋型食生活、マイクロバイオーム、宿主間の相互作用とメタボリックシンドロームへの影響」)

この記事が気に入ったらシェアしてください。
Copyright 2019 mymicrobiome.co.jp - All rights reserved.

免責事項:このサイトやブログの内容は医学的助言、診断や治療を提供することを意図したものではありません。